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RESUMO

O presente trabalho € a compilagdo do estudo que, motivado pela possibilidade de
adicionar clareza a imagens de tomografia por impedéancia elétrica , foi realizado
para a disciplina de Projeto Integrado, junto ao Departamento de Engenharia
Mecénica da EPUSP.

O video de estudo € resultante da aquisi¢do de 30 sinais via Tomdgrafo por
Impedéncia Elétrica seguido da estimagfo de pardmetros via modelo de elementos
finitos e apresenta imagens de uma sessdo transversal do torax que compreende
movimentos relacionados a perfusdo ¢ a respiragéo.

Esses efeitos, da respiragio e da perfusdo sanguinea, aparecem conjugados nos
videos e o trabatho baseou-se na possibilidade de separé-los.

Para tanto, sdo utilizados filtros digitais, em particular os filtros do tipo FIR (“Finite
Impulse Response”) e Wavelet, através de ferramentas computacionais matematicas,
Uma das dificuldades agregadas 2 filtragem desses sinais consiste no fato de estas
serem posteriores A estimagio dos pardmetros, ou seja, sobre o video teoricamente
finalizado. Assim, ao invés de serem filtrados 30 sinais, deverdo ser filtrados (no
caso de uma imagem 640x560) 358.400 sinais, relativos aos pixels da imagem do
video, e que sdo ainda divididos nas 3 cores do sistema RGB (Red, Green, Blue),
totalizando mais de 1 milhdo de sinais a serem filtrados.

O trabalho traz n3o apenas a comparagio entre os dois tipos de filtros, mas também
uma anélise critica de cada um deles individualmente procurando ainda ressaltar
aplicagbes dessa ferramenta relativamente recente e ainda pouco explorada que € a
transformada Wavelet. Sdo ainda executadas comparagdes entre algumas familias de
Wavelet, como por exemplo, Haar e Daubechies.

Outro ponto de vista abordado trata da complexidade computacional, aferida em
termos de horas de processamento de um mesmo hardware para as diferentes

formulacdes de filtragem.



ABSTRACT

This work is the compilation of the studies that, motivated by the possibility to
clarify medical videos, was realized to discipline of Integrated Project together with
the Mechanical Engineering Department of the EPUSP (Polytechnic School of the
Sao Paulo University).

The case study results of the signal acquisition in 30 channels of an Electrical
Impedance Tomograph, followed by the finite elements estimative parameters that
show images of a thoracic chop with blood perfusion and breathing movements.
Such effects, breathe and blood perfusion, appear together in the videos and this
work is based on the possibility to separate them.

For these purposes, digital filters were used, particularly the FIR (“Finite Impulse
Response”) and Wavelet kinds, using mathematical computer tools.

One found difficulty to the filtering action of this is the fact of realization after the
finite element procedure, that increases the number of signals from 30 to 358,400
signals (to a 640x560 image size), relative to each pixel of the video image, that are
multiplied by the 3 RGB colors (Red, Green, Blue) totalizing more than 1 million
signals to be filtered.

Not only does this work bring the comparison between the two filtering methods, but
a critical analysis of each one individually, trying to emphasize the good and the not
o good points, and detaching other applications from this recently used method, that
has a lot to increase, the Wavelet transform. Have been done yet, comparisons
between different forms of Wavelet, like Haar and Daubechies families.

Another point of view has been done about the computation complexity, measured in

terms of processing hours in a same hardware to the different filtering formulations.
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1. INTRODUCAO

A partir de um Tomégrafo por Impedéncia Elétrica sdo obtidas imagens onde € possivel
verificar a sobreposi¢do dos fendmenos da perfusio e da respira¢do de um paciente,
além € claro de um determinado nivel de ruido. Utilizando-se da aplicagdo de filtros
digitais € possivel a obtencio de imagens que acondicionam e, conseqiientemente,
permitem a visualizagdo de cada um dos fendmenos citados, de maneira isolada. B
evidente que para o diagndstico ou acompanhamento de um paciente, a clareza das
imagens pode ser bastante titi] permitindo ainda que se analise localmente o fluxo de
sangue ou de ar, reduzindo inclusive alguma possivel margem para erros médicos.

Os dois modelos de filtro a serem aplicados, testados e comparados para o tratamento
da imagem do tomdgrafo sdo baseados nos principios FIR (“Finite Impulse Response™)
e Wavelet.

O método FIR utiliza-se de uma convolugdo, baseado na inversa da transformada de
Fourter. Em geral o seu custo computacional € alto, apresentando porém linearidade e
estabilidade.

O conceito Wavelet por sua vez ¢ relativamente novo (data da década de 80) e
apresenta infindédvel campo de aplicagSes em sinais de duas ou mais dimensdes (como
no caso de imagens), sendo atualmente a tendéncia no que tange o processamento
computacional de sinais. O procedimento Wavelet mostra-se indicado para o tratamento
de sinais complexos de forma personalizada para cada caso e apresenta de maneira

geral custo computacional mais baixo.



2. DESENVOLVIMENTO:
Nesse item serdo abordados alguns aspectos relevantes ao projeto, relativos aos dois
filtros: FIR e Wavelet, aoc Tomdégrafo por Impedancia Eléirica e ao tratamento de

imagens. .

2.1. Tomografia por Impedancia Elétrica

O processo de Tomografia por Impedéncia Elétrica funciona pela estimagio do campo
interno de condutividade, com o menor erro possivel entre medidas e valores previstos
por um modelo, através da medigdo de potenciais (ou de correntes) impostos por

correntes (ou potenciais) aplicadas aos eletrodos em determinados pontos da superficie

em estudo.

2.1.1. Comparacdes e aplicagoes

Existem atualmente, diversas frentes de pesquisas relacionadas & drea médica que
buscam desenvolver equipamentos, métodos e processos eficientes de aquisigéo,
manipulagdo, tratamento e resolugdo de imagens. Uma dessas empreitadas estd
relacionada a aquisicdo de sinais vitais através da Tomografia por Impedancia Elétrica
(EIT). Em geral, as imagens adquiridas através da EIT, quando comparadas ao ultra-
som ou a Tomografia Computadorizada podem ser consideradas de baixa resolugio
apresentando, no entanto, diversas vantagens perante as técnicas citadas,

Primeiramente, a EIT € nfo invasiva, ndo emite radiagdes e, portanto, ndo € nociva ao
paciente e apresenta custo estrutural reduzido, pois ndo ha necessidade da instalagéo de
uma infra-estrutura especial, como por exemplo, blindagem. O custo computacional
também € relativamente baixo e principalmente, por tratar-se de um equipamento com
dimensd&es reduzidas, pode ser transportado, esse fato elimina possiveis inconvenientes
de deslocamento no caso de pacientes impossibilitados (muitas vezes em leito de UTI,
por exemplo) isso implica ainda que os equipamentos ligados ao paciente ndo precisem

ser desligados ou transportados com © mesmo para a realizacio da tomografia. Outro



fator que agrega vantagens ao processo € a possibilidade de realizar o procedimento em
momento anterior ao cardter emergencial, uma vez que 0 mesmo pode ser feito
inclusive na prépria UTL

A EIT possibilita 0 monitoramento do paciente em tempo real abrindo espago para uma
aplicagfio bastante interessante no controle de unidades de ventilagdo artificial, que sdo

atualmente controladas manualmente e, portanto, sujeita a muito mais erros humanos.

2.1.2. Imagens adquiridas

As imagens, da se¢do do térax, adquiridas pela EIT apresentam dois padrdes bem
definidos e marcantes, um devido a respiragdo, € outro relacionado ao ritmo cardiaco
denominado de agora em diante perfusdo. A relagdo entre perfusdo e respiragio €
também um interessante aspecto a se observar.

As imagens a seguir ilustram quatro instantes distintos de um video onde € possivel
visualizar a sistole, a didstole, a inspiragio e a expiracio em fendmenos combinados em
uma secdo do térax.

A primeira figura apresenta o pulmao preenchido e a pulsagio cardfaca em duas
situacOes, a esquerda em sistole e a direita em didstole. A segunda figura mostra o
pulméo em momento de expiracfo, consegiientemente com baixo volume e a pulsagido

cardiaca de didstole e sistole.



Fig. 2.1 — Inspiracéo e pulsagio cardiaca

Fig. 2.2 — Expiragfo e pulsagio cardiaca

R — | [

Estas imagens foram retiradas de um arquivo que nio foi filtrado, e através das figuras

é possivel perceber as duas regides em questdo, formadas pelos pulmdes na lateral e



pelo coracdo na regido central superior, a idéia € que esses dois efeitos sejam separados
¢ observados individualmente em um novo arquivo de video, perceba que esta

observacdo s6 serd bem detectada através da comparagéo dos filtros.

2.2, Freqiiéncias de corte

Como serdo tratadas nesse estudo as freqiiéncias de respiracdo e perfusdo, &

conveniente que seja explicado um pouco o funcionamento desses mecanismos:

2.2.1. Respiracio:

A intensidade e o padrio da respiracfio sdo determinados pela contragdo combinada dos
grupos musculares do diafragma, da caixa tordcica, do abddmen e das estruturas
circundanies. A regulagio da respiragio € basicamenie um sistema de resposta
alimentado por entradas provindas de muiltiplas regiGes sensoras. O ciclo respiratério é
entao controlado pelo centro respiratério (localizado no tronco cerebral) € modificado
em resposta as informacdes obtidas pelos centros cercbrais superiores ¢ receptores
sisttmicos. O centro de controle respiratério estd localizado no bulbo e trata-se de um
conglomerado de grupos nervosos distintos anatomicamente e capazes de gerar um
padrio ventilatdrio.

A atividade respiratéria pode ser alterada, em resposta a uma infinidade de estimulos,

tais quais visuais, emocionais ou voluntérios.

2.2.1.1. Mecanismo da inspiracio:

Visto que o padrio respiratdrio pode contar com intimeras varidveis, serdo consideradas
como ponto de partida, as situacdes de normalidade em termos de corpo humano, ou

seja, o repouso.



Na situacio basal, c€lulas auto-excitaveis através de um sinal em rampa (comandado
pelo centro inspiratério) produz por cerca de dois segundos, a inflacdo dos pulmdes e
volta a agir apds trés segundos de sdbita parada. Dessa regifo parte um conjunto de
fibras que através da medula se dirige aos neurGnios motores responséveis pelos grupos

musculares da inspiragio.

2.2.1.2.. Freqiiéncia respiratéria

Na condigdo acima explicitada pode-se considerar a atividade pulmonar como um sinal

ciclico de freqiiéncia da ordem de 0,2 Hz, ou seja, periodo de duragdo da ordem de 5 s.

2.2.2. Perfusio:

Como a respiragao, o ritmo da perfusiio se altera ao longo das atividades cotidianas

segundo alguns sistemas de controle, basicamente divididos em intrinsecos e

extrinsecos:

Controle Intrinseco:

As fibras musculares cardiacas quando recebem o volume sanguineo proveniente do
sistema venoso distendem-se, quanto maior essa distensdo, um conjunto de fibras
chamado fibras de Purkinje tornam-se mais sensiveis e conseqiientemente mais
excitdveis conforme o grau dessa distensdo. Essa excitabilidade acarreta no aumento da
freqiiéncia de descarga ritmica na despolariza¢do de tais fibras, verificam-se entdo as

alteragdes da prépria freqiiéncia cardiaca,



Controle extrinseco:

O coracdo também altera a sua atividade de acordo com o grau de atividade do Sistema
Nervoso Autdnomo (SNA). O SNA exerce grande influencia no funcionamento de
diversos tecidos do nosso corpo através dos sistemas Simpatico e Parassimpaético.

Um predominio da atividade simpdtica do SNA provoca, no coragio, um significativo
aumento na freqii€ncia e da forga de contragio cardiaca.

J4 um predominio da atividade parassimpética do SNA, através da liberacdo de
acetilcolina provoca o efeito oposto no coracdio: redugiio na freqii€ncia e na forca de

contragdo cardfaca.

2.2.2.1. Freqiiéncia cardiaca

Para a atividade cardiaca o prospecto € o mesmo de quando se falou em respiragdo,
cada caso apresenta deve ser analisado em particular, porem, para um passo inicial pode
ser considerada a freqiiéncia em repouso de um adulto médio da ordem de 60 a 80

batimentos por minuto, ou seja, algo superior a 1 Hz.

2.2.3. Determinacio da freqiiéncia de corte para o filtro FIR:

A partir do apresentado, € de se imaginar que a freqii€ncia de corte escolhida deva se
situar entre as faixas de 0,2 Hz ¢ 1Hz. Nesses padrdes a freqliéncia de 0,5Hz é, por

exemplo, uma boa escolha.

2.2.4. Sobre a ordem do filtro FIR:

A partir da freqiiéncia de corte e da taxa de amostragern (caracteristica do sinal) pode-
se definir a ordem do filtro FIR. A ordem do filtro representa o tamanho do vetor de
fregii@ncias do sinal, e conforme o comprimento do vetor (ordem) e a taxa de aquisicdo

(mdxima freqiiéncia observavel) serd definida a largura de cada banda, ou seja, a



amplitude da faixa de freqiiéncia compreendida por cada ponto discreto do filtro, € a
qual serd imposto um determinado ganho. E importante lembrar sempre que o custo
computacional estd diretamente ligado a ordem do filtro e que por tanto a menor ordem
possivel sem prejudicar a eficiéncia é a melhor alternativa.

No devido momento essa defini¢éo serd abordada novamente.

2.3. Filtro FIR

A grande vantagem da filtragem de sinais pelo filtro FIR (“Finite Impulse Response™)
se dé pela sua resposta linear em relagdo a fase da entrada, quando temos um sistema
causal, ou seja, independente dos valores futuros da entrada. Este fato permite a
filtragem em tempo real do sinal de entrada.

O custo implicado pela filtragem via FIR por sua vez é dado pela alta ordem do mesmo
a fim de permitir bons resultados.

Sendo o filtro de ordem M-, a resposta do sinal a filtragem € obtida a partir das M-J
amostras do sinal anteriores ao instante considerado e o préprio instante. O filtro FIR
ndo é, portanto, re-alimentado sendo chamado também de filtro de média mével ou
filtro ndo recursivo.

Chamando de x a entrada € de y a saida do sinal, para as » amostras (n sempre variando

de O até M-7) teremos a seguinte equagio de diferengas:
y(r)=by - x(n)+b -x(n—-1)+..+b, - [n—(M -1)]
Ou seja:

Yy =3"b, - x(n—k)

Onde by representa os coeficientes do filtro FIR.



Alternativamente podemos representar o sinal de saida como a convolugio entre a
resposta em freqiiéncia imposta para cada “sample” h(n} com o sinal de entrada,

obtendo:
j M-l
ymy =3, b x(n—k)

Comparando as duas equagGes anteriores, € claro que os coeficientes by s80 a resposta
em freqiiéncia ;.
A fungio de transferéncia do filtro FIR (no dominio da fregiiéncia) apresenta-se entio

da seguinte maneira;
_ M-l ok
H(z)= Zk:ﬂ hk Z

Por ndo apresenta denominador € notével que a resposta € sempre estivel.

Para que o sistema tenha resposta linear de fase, € necessdria ainda uma condigio de

simetria, explicitada pela seguinte condigio:
h(n) =th(M —1—n)

Incorporada a condicio de simetria € possivel ainda comprovar algebricamente que a

fase de resposta € linear e tem a seguinte forma;

B-x @ (M-1)

S@)==3 2

2.3.1. Implementacao do filtro FIR

Na pritica a implementagdo do filtro FIR faz-se por meio de convolugbes,

possibilitadas justamente devido ao ndmero finito de amostras. Basicamente a sintese



10

do filtro FIR ¢ feita através da Transformada Inversa de Fourier (TFI) de uma
seqiiéncia que representa a amplitude do filtro no dominio da freqiiéncia, gerando a
resposta ao impulso do filtro, que é uma seqiiéncia finita no tempo. O filtiro FIR € uma
convolugdo do sinal de entrada com a resposta ao impulso do filtro.

Serd agora descrito o algoritmo da filtragem para um sinal v(t) qualquer obtido por
amostragem. Os c6digos fonte utilizados nas simulagdes em “Scilab” e “Matlab” estao
em anexo.

Lembrapdo sempre que a faixa de freqiiéncia observdvel é composta por metade do
espectro, respeitando o critério de Nyquest, para que nio sejam observados efeitos de
“aliasing”, uma vez que a maxima freqiiéncia observdvel deve ser determinada por um
periodo onde ocorram no minimo duas aquisigdes, ou seja, o sinal s6 pode ser
corretamente avaliado se forem capturados dois instantes referentes a um mesmo ciclo

(um positivo ¢ um negativo em relagdo 4 média).

Algoritmo:

v = Sinal » adquirido por um certo periodo (T) que possui um niimero de amostras (n).
fs=n/T = fs € a taxa amostragem do sinal por periodo de tempo.

M = Ordem do filtro > deve ser impar, foi adotada ordem 21

w(i)=2* 1 *(i-1)/M, com i variando de 1 até a (M/2+1) - anti-aliasing
define a resposta em fregiiéncia do "sistema linear"

Para i=fc = H(i)=0.4 para aliviar o truncamento

se o filtro for passa baixa:

para i=1:fc = H(i)=1;

para i=7:11 = H(i)=0.0;

se o filtro for passa alta

para i=1:fc = H(i)=0;

para i=7:11 = H(i)=1.0;

Para n variando de 1 a 10 e k variandode 1 a 11:
a(k,n)=2*cos(w(k)*((M-1)/2-(n-1)));

Para k variandode 1 a 11;
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alk,I1)=1;

Determinando os coeficientes do filtro FIR, h=FFT-Inversa (H).
h=inv(a)*H

Para satisfazer a condigio de simetria nos coeficientes:
Parai variandode 1 a 11;

ht(i)=h(i);

Para i variando de 1 a 10;

ht(21-(i-1))=h(i);

E aplicando o filtro ao sinal v = obtem-se vfiltrado
vi(1)=v(1)*h(1);

vi(2)=v(2)*h(1)+v(1)*h(2);
vE(3)=v(3)*h({1)+v(2)*h(2)+v(1)*h(3);

parai=1:21

aux=0.0;

para j=1:i

aux=aux+v(i-(j-1))*ht();

vi(i)=aux;

para i=22:456;

aux=0.0;

para j=1:21;

aux=aux+v(i-(j-1))*ht(j);

vi(i)=aux;

2.4. Filtro Wavelet
Nessa secdo serdo definidos alguns conceitos importantes relativos 4 transformada
Wavelet, em seguida, serfio expostas notas sobre as bases Wavelet e com respeito a sua

implementag&o propriamente dita.
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2.4.1. Introducie a transformada Wavelet

Wavelets sdo fungdes que satisfazem certos pressupostos matemdticos e sdo usados em
representacdes de dados ou fungdes. A idéia em si ndo € nova, a aproximagdo por
superposi¢do de fungbes data do inicio do século XIX através da formulagdo por
Fourier da transformada em base de senos e cossenos. Todavia, na andlise Wavelet, a
escala utilizada para analisar o fragmento de sinal desempenha importante papel.

Os algoritmos Wavelet processam os dados em diferentes resolugdes (escalas), se um
sinal for analisado através de janelas amplas, serio pronunciados os efeitos
(caracteristicas) de grande escala, € em contrapartida utilizando janelas mais finas, sdo
pronunciados os efeitos mais sutis. Assim, o objetivo da andlise via transformada
Wavelet € conseguir observar tanto os efeitos globais, quanto os efeitos locais.

E justamente essa possibilidade de andlise ampla que faz da transformada Wavelet uma
ferramenta interessante e bastante util.

Por décadas os cientistas buscaram funcdes mais apropriadas do que os senos e
cossenos (base da FFT) na aproximacgdo dos fragmentos de urn sinal. Através da analise
via Wavelet € possivel aproximar fun¢des contidas em dominio finito, diferentemente
de um sinal senoidal, assim, a andlise de descontinuidades € muito bem vista pela
transformada Wavelet.

O procedimento de andlise leva em consideracdo a adogdo de uma fungéo mée,
(“Wavelet Mother”, também chamada “Analyzing Wavelet”). A andlise temporal €
feita por uma componente de alta freqiiéncia (contraida) enquanto a andlise em
fregiiéncia € obtida por uma componente dilatada da mesma fungéo.

Como o sinal original pode ser representado em termos da expansdao Wavelet
(utilizando uma combinagfo linear dos coeficientes das fungodes), a operagio dos dados
pode ser efetuada através da utilizagdo dos coeficientes correspondentes. Escolhendo a
familia de fungdes mais apropriada para os dados a serem analisados, ou através de
truncamentos eficientes, a transformada se mostra uma excelente ferramenta de

compressdo do sinal.
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As fungBes Wavelet apresentam 6tima funcionalidade para estudos astrondmicos,
acisticos, nucleares, processamento de imagens e sinais, predi¢do de terremotos,

radares, resolucfio de equagdes diferenciais entre tantas outras aplicag0es.

2.4.1.1. Histérico
Historicamente, a andlise Wavelet apresenta diversas origens que convergem para a
atual situagdo da ferramenta, pode-se dividir esse desenvolvimento entre os periodos

anteriores e posteriores a década de 30.

Antes de 1930

Indiscutivelmente a andlise Wavelet iniciou-se a partir da transformada de Fourier
(século XIX), que leva uma fungio do dominio do tempo ao dominio da freqii€ncia (ja
explicado nos capitulos anteriores). A transformada associa a qualquer fungio a

seguinte formulagio:
Gyt Z:;l {a, -cos(k-x)+b, -sin{k - x),

E com os coeficientes obtidos por:

@ =-2——.1;f’5f(x)dx _— :%f”f(x)-cos(kx)dx e b ,__%fﬂf(x).sin(kx)dx

A partir dessa formulagdo por Fourier, abriu-se um novo universo no que se refere ao
tratamento de dados e funcdes. A partir de 1807 os matemdticos comegaram a explorar
convergéncias das series de Fourier, sistemas ortogonais e gradualmente foram se
redirecionando da anélise em freqiiéncia para a andlise em escala. O que significa
analisar f{x) através de estruturas matemdticas que variam em escala, da seguinte
maneira: Aplica-se essa determinada estrutura ao sinal sucessivamente porem em

diferentes escalas, ¢ as escala correlacionam-se os coeficientes obtidos. Esse leque de
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escalas se mostrava menos suscetivel a ruido, pois eram medidas as medias de
flutuagdo do sinal em cada escala particular.

A primeira mencdo a teoria das Wavelets aparece no apéndice da tese de A. Haar
(1909), uma das propriedades da Wavelet de Haar que a torna de uso limitado consiste

no fato de ela ndo ser continuamente diferenciavel.

Os anos 30

Muitos grupos trabalhavam em pesquisas independentes a representacdo de fun¢des de
base em variacdo de escala.

Paul Levi notou a superioridade na andlise de sinais randdmicos pela base de fungdes
de Haar em relacéo a transformada de Fourier,

Ainda em 1930 Littlewood, Paley e Stein envolvidos no calculo da energia de uma
funcfio f{x) que mostrava diferentes resultados quando se tratavam de casos de energia
distribuida ou concentrada ao redor de alguns pontos, o que indicava uma nao
conservacio dessa energia.

Essas pesquisas levaram 2 descoberta de uma fungiio que podia variar em escala e
conservar a propriedade da energia. Esse trabalho serviu de base para o trabalho de
David Marr, com um algoritmo efetivo para o processamento de imagens, jd no

principio da década de 80.

Décadas de 60 a 80

Nas décadas que compreendem o periodo entre 1960 e 1980, os matematicos Guido
Weiss ¢ Ronald R. Coifman estudaram elementos simples de uma fun¢io espaco,
chamados 4tomos, com a meta de encontrar uma fungio comum a essa classe e que
possibilitasse a reconstrugdo de todos os elementos da fungio de espaco utilizando
esses atomos. Em 1980, Grossman and Morlet, definiram Wavelets no contexto da

fisica quéntica, criando urna nova mentalidade para o conceito da transformada.

Apés 1980
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Em 19835, Stephane Mallat deu as Wavelets um impulso adicional, através de seu
trabalho no processamento de sinais digitais. Mallat descobriu relagbes entre algoritmos
de piramide, filtros “quadrature mirror” e as bases ortonormais Wavelet. Inspirado
nesses resultados, Y. Meyer construiu o primeiro Wavelet no trivial. Diferentemente
das Wavelets de Haar, as Wavelets de Meyer sdo continuamente diferencidveis, embora
n56 apresentem uma estrutura muito compacta. Alguns anos depois, Ingrid Daubechies
utilizou-se do trabalho de Mallat para construir uma nova familia de fungSes Wavelet
em bases ortonormais, que podem ser consideradas talvez como a mais elegante das

solucdes e a que melhor reflete as atuais aplicagdes.

2.4.2. Funcoes de base

Toda fungdo que ndo seja unidimensional pode ser considerada como a combinagfo de
uma base de vetores (no caso digital) ou de fung¢des (no caso anal6gico), a melhor base
possui ainda a propriedade de ortogonalidade entre os seus elementos.

Apenas de maneira ilustrativa podemos considerar um vetor de duas dimensdes (x,y)
como sendo a soma do vetor da multiplicagio de x por (1,0) com o vetor da
multiplicagio de y por (0,1). Dessa maneira o elemento (x,y) foi decomposto na base
ortogonal composta pelos vetores (1,0) e (0,1).

No caso de um elemento analégico, como uma fungdo f(x), por exemplo, podemos
relembrar o caso da transformada de Fourier, que decompde em uma soma de senos e
cossenos através da correta aproximacio de freqiiéncias e amplitudes. Essas fungdes

sio ainda ortogonais (dado que o produto escalar das mesmas € igual a zero).
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2.4.3. Funcoes de escala

Uma fungiio de base varia na escala de maneira que uma mesma fungfio ou espago seja
escalonado em diferentes classes. Por exemplo, imagine um sinal no dominio de 0 a 1.
Este sinal pode ser dividido como duas funcgbes, uma da etapa em que & escala varia
entre 0 a 1/2 e outra com a escala variando de 1/2 a 1. O mesmo sinal pode também ser
dividido em quatro fungbes, de 0 a 1/4, 1/4 a 1/2, 1/2 a 3/4, e 3/4 a 1. E assim por
diante. Cada uma das representacSes codifica o sinal original com uma defini¢ao

particular, ou seja, escalonando-o de maneiras distintas.

2.4.4. Transformada de Fourier X Transformada Wavelet

Como dito anteriormente, a transformada de Fourier antecede a transformada Wavelet
em pelo menos um século e pode-se dizer que a segunda veio em fungéo de uma
necessidade percebida pela utiliza¢io da transformada de primeira, vale lembrar que em
nada a questdio é comparar as duas quanto i validade ou nfo. A transformada de Fourier
apresenta em determinadas situa¢Oes excelentes resultados, onde muitas vezes & pouco
conveniente que se tenha um tratamento mais complexo (caso da Wavelet), o objetivo
desse capitulo € pura e simplesmente o de levantar similaridades ¢ particularidades de

cada uma das transformadas, de maneira a facilitar o entendimento dos dois

tratamentos.

2.4.4.1. Similaridades

As duas transformadas que sdo chamadas “Fast Fourier e Transform” (FFT) e a
“Discrete Wavelet Transform” e (DWT), sdo operagdes lineares que geram a partir de
estruturas de dados que contem log, n segmentos de diversos comprimentos em vetores

de dados de comprimento 2"
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As propriedades matemdticas que envolvem as matrizes de transformag@o séo similares,
a matriz de transformada inversa € a inversa da matriz de transformacgio. Embora as
bases da transformada Wavelet (“Wavelet Mother™) sejam um pouco mais complexas
do que as senoidais da transformada de Fourier, a mecanica € bastante parecida.

Uma outra similaridade se encontra na localiza¢io das fungdes de base no dominio da
freqiiéncia, fazendo delas ferramentas que analisam a energia contida em um intervalo
de freqiiéncia (andlise espectral) sendo muito tteis na determinago da distribui¢ao de

energia de um sinal.

2.4.5. Particularidades

A transformada por onduletas (Wavelet), gera espectros ao longo do tempo, ao passo
que a transformada de Fourier gera um espectro tinico para toda a série histérica.

Para melhor ilustrar as duas transformadas (FFT e Wavelet), aqui serdo representadas
no plano do tempo-freqiiéncia as regides de cobertura das fungles de base para ambos
0s Casos.

A esquerda a representago da transformada de Fourier ¢ a direita da transformada

Wavelet.

Fig. 2.3 — Plano comparativo
Fregiiéncia Freqiiéncia

A 4
NIRARIEARRTNRARID!

. I,

Tempo Tempo
Uma das grandes vantagens conforme observado na figura acima € o tamanho da
janela, maior para menores freqiiéncias, € menor para maiores freqiiéncias, o que reduz

também o efeito de truncamento da janela aplicada & andlise.
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Essa disposicdo permite ainda uma andlise direta 2 informacfo, ou seja, a sua
localizagdo no tempo, enquanto a transformada de Fourier obscurece esse aspecto.

Outra grande vantagem se dd ao fato de a transformada Wavelet possuir infinitas bases
e ndo se limitar a uma familia de fun¢Bes, apresentando assim uma melhor adequacdo a
cada tipo de sinal, muito embora isso exija uma andlise quanto 2 melhor base para cada

aplicacio.
2.4.6. Bases Wavelet

Conforme discutido, muitas sfio as familias de ondas que compreendem a denominagio
Wavelet (na realidade sao infinitas). Esta se¢fo apresenta algumas delas (especialmente
as supracitadas) e em especial aborda algumas particularidades.

Lembrando que para cada aplicagdo uma diferente familia apresentard os melhores
resultados, de acordo com os objetivos de cada estudo. Para uma primeira abordagem €&
conveniente exemplificar através de imagens algumas dessas familias, as figuras a

seguir s3o elementos representantes de algumas familias representativas de Wavelets:
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Fig. 2.4 — Exemplos de familias
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Observe que os elementos t8m duraco finita e sdo bem diferentes entre si.
Repare ainda na figura a seguir, que ampliando o segundo pico da funcdo de

Daubechies, é perceptivel uma repeti¢io com menor intensidade do primeiro pico:

Fig. 2.5 — Detalhe da fung¢@o de Daubechies
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2.4.6.1. Diferenciacio das familias Wavelet

Conforme explicitado anteriormente, para executar a analise Wavelet, € necessario
escolher uma familia que se adapte ao sinal analisado. Para tanto serd feita uma breve
anglise de algumas familias pertinentes, ressaltando que a nomenclatura das subdivisoes

é meramente ilustrativa.

Fonte: Matlab Wavelet Toolbox

1. Familias simples

Familias: Gaussiana, Morlet e Chapéu Mexicano (Mexican Hat)

Propriedades: Anélise nfio ortogonal, sem fase ¢, sem suporte a compactacao, a
reconstrugio ndo se apresenta muito segura.

Andlises: Decomposig¢io continua.

Caracteristicas: Simetria, algoritmo rapido e reconstrucao invidvel.

2. Familias infinitamente regulares

Familia: Meyer

Propriedades: Andlise ortogonal, existe fase ¢, sem suporte a compactagao,
indefinidamente derivavel.

Andlises: Decomposi¢do continua, transformada discreta.

Caracteristicas: Simetria, regularidade.

Famfilia: Meyer discreta
Propriedades: Aproximagio FIR da Wavelet Meyer.

Anilises: Decomposicdo continua, transformada discreta.

3. Ortogonal e com suporie a compactacio
Famijlias: Daubechies, Symlets, Coiflets.
Propriedades: Anélise ortogonal, existe fase ¢, com suporte a compactagéo,

quantidade dada de instantes de descontinuidade.



Andlises: Decomposicio continua, transformada discreta via FWT.
Caracteristicas: Descontinuidades, filtros FIR, regularidade pobre, cada familia

apresenta ainda algumas propriedades especificas.

4. Bi-ortogonal e com suporte a compactaciio

Familia: B-splines.

Propriedades: Andlise bi-ortogonal, existe fase ¢, com suporte a compactagéo,
descontinuidades, regularidade conhecida.

Andlises: Decomposic¢do continua, transformada discreta via FWT.

Caracteristicas: Simetria com filtros FIR, perda da ortogonaligade.

5. Complexas
Familias: Gaussiana complexa, Morlet complexa, Shannon complexa, B-spline

complexa.
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Propriedades: Andlise ndo ortogonal, ndo existe fase @, sem suporte a compactagio.

Andlises: Decomposic¢do continua complexa.

Caracteristicas: Simetria, algoritmo rdpido e reconstrucgfo inviavel.

O quadro a seguir traduz um resumo de algumas particularidades de cada familia,

fornecendo uma boa base de comparagio entre as diferentes familias,
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Fig. 2.6 — Caracteristicas das familias
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2.4.6.2. Escolha da familia Wavelet

Muitas sdo as possibilidades na escolha da familia a ser utilizada no tratamento do
sinal. Dentre todas, apenas algumas sdo convenientes e dentre estas, foi escolhida para
este caso particular a transformada discreta de Meyer (D-Meyer), para a decisdo foi
levado em consideragédo a questdo do dominio discreto, velocidade de procesamento e
da boa reconstrugdo dom sinal a partir de testes. A Wavelet discreta de Meyer apresenta

0 a seguinte estrutura:

Fig. 2.7 — Fun¢des Wavelet e de escala:

Wavelet Meyer
1 5 T I T T I T I

Funcao Meyer de escala
15 T T I T T T T

a5 1 1 ! I L I ]
-8 6 -4 2 0 2 4 B B

2.4.7. A transformada discreta Wavelet (DWT)

Embora a transformada Wavelet continua discretizada (em termos computacionais) nos
pareca em primeira vista uma transformada discreta, em fato ela ndo passa de uma
simples versdo em samples da transformada continua, com informagdes redundantes em

termos da andlise de sinais. Essa redundincia demanda alta capacidade computacional ¢



24

conseqiientemente: muito tempo e recurso. A transformada Wavelet discreta (DWT)
por sua vez prové informacao suficiente para a anélise ¢ sintese do sinal original, com
uma significante reducdio de tempo computacional.

A DWT tem implementacio consideravelmente simples se comparada a CWT
(continua). Os conceitos bésicos e propriedades serdo introduzidos nesta segéo, visando

analisar de maneira voltada para a implementacédo computacional..

2.4.8. Introducio a DWT

¥

Dilatactes e translagGes da fungdo mée (¢{x)), definem uma base ortogonal, a base

Wavelet a seguir representada:

G =22 927 x=1)

As varidveis s e [ so inteiros que dilatam e escalonam a fung¢do mae ¢ para que sejam
geradas as Wavelets, como por exemplo nessa andlise, a familia Wavelet de Meyer.

O coeficiente s representa a escala e conseqiientemente determina a largura da fungéo e
o coeficiente I, a posicao. Note que a fun¢io mie € redimensionada (ou dilatada) em
potencias de dois e transladada por ndmeros inteiros. O que faz da Wavelet
especialmente interessante € justamente essa similaridade dentro de uma familia,
causada pelos redimensionamentos e reposicionamentos. Ou seja, a partir da Wavelet
mae, temos um amplo conhecimento da base.

Para expandir o dominio para diferentes resolugdes, a Wavelet mée € arranjada em uma

equagio de escala:

W(x) = 3 (~D e d(2x+k)

k=—1
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Aqui, W(x) € a fungfio de escala para a Wavelet mie (¢), e ¢ 0s coeficientes Wavelet,

que devem satisfazer:

N

N-) -1
ch =2, e chcuza =20,
k=0 -0

k

Onde &€ a fungio delta e { € o indice de localizagao.

Uma caracteristica bastante 1til do sistema Wavelet € a facilidade com que € possivel
escolher os coeficientes do sistema, para adaptd-lo ao problema especifico. Um
exemplo a ser considerado se dd no desenvolvimento por Daubechies em uma de suas
publicacdes, de familias especificas de Wavelet que apresentam excelente fidelidade
para a representa¢io do comportamento de polindmios.

Dessa maneira, € conveniente olhar os coeficientes como coeficientes do filtro Wavelet,
que se encontram localizados em uma matriz de transformaggo e sdo aplicados ao vetor
do sinal (dados de entrada). A funcionalidade do filtro pode ser entendida como a
superposigio de dois efeitos, um funcionando de maneira a suavizar o sinal (de maneira
similar a uma media mével) e o segundo trabalhando no detalhe do sinal e permitindo
Ou ndo a sua passagem.

A matriz com os coeficientes da transformagio do DWT € aplicada ao vetor de dados
por um algoritmo chamado hierdrquico ou ainda piramidal. Os coeficientes sio
arranjados de forma que as linhas impares contenham os coeficientes que agem no
sentido de suavizar e as linhas pares no detalhamento. Inicialmente, a matriz € aplicada
ao vetor original, entdo o vetor suavizado ¢ dividido pela metade e a matriz € aplicada
novamente, e em seguida o vetor é reduzido a um quarto e assim por diante, até o dado
trivial remanescente. Assim, a aplicagdo da matriz chega a um nivel de detalhamento de
alta resolugfio, suavizando-o sucessivamente. A saida desse processo consiste no item

remanescente adicionado dos componentes de detalhe.
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2.4.9. A transformada Wavelet discreta DWT)

A fundamentacio da DWT remete a 1976, quando Croiser, Esteban e Galand
desenvolveram uma técnica para decompor sinais discretos. Crochiere, Weber e
Flanagan haviam feito trabalho similar na codificagéio de sinais de fala no mesmo ano.
Este esquema de andlise foi nomeado codificagio de sub-banda. Em 1983, Burt definiu
uma técnica bastante parecida e nomeou codificacdo piramidal, o que € também
reconhecido por andlise de multi-resolugfio. Apds isto, em 1989, Vetterli e Lé Gall

desenvolveram o esquema, removendo a redundancia existente no método piramidal.

2.4.10. A codificagiio de sub-banda e a andlise de multi-resolucio

A idéia bésica aqui € a mesma do CWT. Uma representagio de um sinal digital em um
plano de tempo e escala, que € obtido através do uso de técnicas de filtragem digital.
Relembrando que a CWT € a correlagfo entre a fungiio Wavelet em diferentes escalas e
o sinal em termos de escala (freqiiéncia), uma forma de mediciio de similaridades. A
andlise continua € computada modificando-se a escala da janela de andlise, dividindo a
Janela no tempo, multiplicando pelo sinal e integrando em todo o tempo.

No caso discreto, filtros de diferentes freqiiéncias de corte sfio usados para analisar o
sinal em diferentes escalas. O sinal € submetido a uma serie de filtros (passa-alta e
passa-baixa).

A resolugio do sinal, que no fim é uma medida da quantidade de informacdes de
detalhe no sinal, € modificada pelas operacdes de filtragem e a escala € alterada pelas
operagbes de “upsampling” e “downsampling”, que remetem respectivamente a adigfio
de samples intermedidrios (geralmente zero ou a média) ou a redugdo (eliminagfo) dos
mesmos, ampliando ou reduzindo conseqiientemente a resolugdo do sinal.

O procedimento inicia-se com a filtragem por um filtro passa-baixa de meia banda, com
resposta ao impulso h(n). A filtragem do sinal corresponde & operagéo matemdtica de

convolugdo com a resposta ao impulso do filtro. E pode ser assim representada:
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x[n}*A[n] = bix[}:'] -hn - k]

O filtro passa-baixa de meia banda remove todas as freqiiéncias de ordem superior a
metade da mais alta freqiiéncia do sinal. Se um sinal apresenta uma componente
méxima de 1000 rad/s, equivale dizer que a filtragem remove qualquer componente
superior a 500 rad/s.

De acordo com o critério de Nyquest, pode-se entender que apés a filtragem de meia-
banda, é possivel eliminar metade dos “samples”, uma vez que a méxima freqiiéncia foi
reduzida 2 metade. E executada entdo a operagio de “subsample”, que elimina todos os
samples fmpares, reduzindo a metade a taxa do sinal e conseqiientemente ©
comprimento. Note que o filoro mantém a taxa do sinal, embora corte as altas
freqiiéncias, e ainda que na realidade a operagao de “subsample” executa no sinal um
efeito de escala. E importante perceber que a perda de informagdes aqui se da apenas
pela filtragem do sinal, e ndo pelo “subsample”, que é apenas uma adequagéo a nova
composicio do sinal e que respeita o critério de Nyquest.

O procedimento pode ser expresso matematicamente por:

y[r] = Zm:k[k] -x[2n - £

-

Uma importante propriedade da transformada discreta Wavelet € a rela¢do entre a
resposta em impulso dos filtros passa-alta e passa-baixa, estes ndo sdo independentes €

se relacionam por:
glZ-1-n]=(-1)"-An]
Onde g[n] € o filtro passa-alta, h[n] o passa-baixa filter, e L o comprimento do filtro

(em ndmero de pontos). Perceba que um € uma versao inversa do outro. A conversdo do

passa-baixa para o passa-alta é dada pelo termo (-1)". Filtros que satisfazem essa



28

condigfio sio comumente usados no processamento de sinais, e conhecidos por QMF

(Quadrature Mirror Filters). Os dois filtros e o “subsampling” sao expressos por:

ugl#1= 3 aln] - gl-n +2k]

Youl®]= Zx[n] “H[-n +2F]

A reconstrugiio do sinal torna-se simples quando os filtros passa-banda formam bases
ortogonais. O procedimento € entdo seguido em ordem reversa para a reconstrugao. @)
sinal a cada level é submetido ao “upsample” por dois ¢ sintetizado pelos filtros g’[n] e
h’[n] (passa-alta e passa-baixa respectivamente) e entdo somado ao detalhe. Um ponto
interessante € a similaridade exceto pela questdio temporal (reversa) entre ambos os

casos. Entdio a reconstrucio € executada para cada camada segundo:

1= S (g1 2L + 21+ (3, 2] - AL +28])

k=—t

Contudo, quando o filtro nfio € um passa-banda ideal, torna-se impossivel uma perfeita
reconstrucdo. Embora ndo seja possivel construir o filtro ideal, sob certas condi¢oes €
possivel encontrar filtros que fagam a reconstruciio bem préxima do ideal.

Note que para um sucessivo “subsample” de base 2, o comprimento do sinal deve ser
uma potencia de 2 ou um miltiplo de uma potencia de 2, de maneira que as
decomposicdes sejam eficientes. O comprimento do sinal determina quantas vezes ©
mesmo pode ser decomposto. Um sinal de 1024 pontos, por exemplo, pode sofrer uma

decomposigéio de 10 fases.
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2.4.11. Os coeficientes DWT

A interpretacio dos coeficientes da DWT nem sempre € muito simples, isso devido a
sua apresentagio bastante peculiar, onde os coeficientes de cada nivel sdo
concatenados, iniciando-se pelo ultimo nivel. Este arranjo pode ser melhor explicado
através de um exemplo.

Supondo um sinal de 256 samples de comprimento, adquirido a uma taxa de 10MHZ,
de onde serdo obtidos os coeficientes DWT. Pelo critério de Nyquest, a componente de
maior freqiiéncia existente no sinal é de SMHZ. Na primeira iteracio com os filtros
passa-baixa e passa-alta, a safda de ambos sofre o “subsample” de 2. O sinal do passa-
alta compde o primeiro nivel dos coeficientes, ali existirdo 128 samples representativos
da faixa de fregiiéncia [2,5 5]MHZ. O sinal filtrado pelo passa-baixa (também com 128
samples) representa a faixa [0 2,5]MHZ e que serd novamente submetido as filtragens e
ao “subsample”, de onde surge o segundo nivel de coeficientes, com 64 samples, e
sucessivamente perfazendo o terceiro nivel com 32 samples € assim por diante. Esse
procedimento pode ser executado até que haja 1 vnico coeficiente.

Assim, o que se obtém é uma pirdmide com 1 coeficiente no nivel 8, 2 coeficientes no
nivel 7, 4 coeficientes no nivel 6, 8 coeficientes no nivel 5, 16 coeficientes no nivel 4 e
conforme dito anteriormente nos demais niveis.

Assim, para as menores freqiiéncias, sao wsados menos coeficientes, a resolugao
temporal se reduz conforme a freqiiéncia decresce, isto ndo afeta no entanto a
quantidade de informagdes naquele espectro, uma vez que apenas as informagdes

redundantes sfo eliminadas.

2.4.12. A transformada rapida Wavelet (FWT)

Em geral, a matriz DWT n#o € esparsa o que acrescenta a mesma complexidade que
para o caso de uma transformada discreta de Fourier. E a resolugfio se mostra também

de maneira similar, airavés da fatoragio de DWT em produtos de pequenas matrizes
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esparsas utilizando-se de propriedades de similaridade. O algoritmo resultante requer

apenas n operagdes para transformar um vetor de n dados.

2.4.13. Transformada Wavelet Packet (WPT)

Atualmente a transformada Wavelet ¢ uma subdivisdo de uma transformada mais
versitil, a transformada Wavelet Packet,

Wavelets Packets sdo constituidas por combinagdes lineares particulares de Wavelets,
que formam bases caracterizadas pela retencdo de propriedades como, por exemplo, a
ortogonalidade e a localizacdo das Wavelets originais. Os coeficientes dessa
combinag@o linear sdo obtidos através de um algoritmo recursivo que faz de cada

coeficiente da Wavelet Packet a raiz da sua prépria drvore de andlise,

2.4.14. Formas de onda adaptadas

Dado o infinito leque de escolhas possivel em relacdo as fungBes de base, seria
conveniente encontrar a melhor delas para o problema particular. Uma base de forma
de onda adaptada (“adapted waveform™)} ¢ a melhor base para a representacio de um
dado sinal. Essa escolha se baseia em informacgdes substanciais a respeito do sinal, € no
fato de a base descrita ser eficiente, ou seja, apresentar poucos termos para conseguir
representar o sinal.

De acordo com Wickerhauser, algumas propriedades sdo desejdveis:

- agilidade do calculo dos produtos internos entre as fungGes da base;

- rapidez na superposicio das fungdes de base;

- boa localizag@o espacial;

- boa localizacgdo espectral;

- boa independéncia linear;

No caso da andlise a ser executada neste trabalho, ndo serd utilizada uma forma

adaptada, mas sim uma familia desenvolvida e que satisfaga os anseios do trabalho.
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2.4.15. Exemplos de aplicacio

A seguir, apenas para ilustrar o vasto campo de aplicagéio da transformada Wavelet,

serdo apresentados alguns exemplos:

Fig. 2.8 — Compactacfio de imagens

A figura acima mostra uma impressdo digital original (a esquerda) ¢ uma impressdo

reconstruida a partir de uma compressio Wavelet de 26:1, utilizada pelo FBI.

Fig. 2.9 — Redugo de ruido
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Repare que o sinal superior apresenta alta energia em forma de ruido, e que apés a
filiragem o mesmo aparece limpo, esse € um exemplo de aplicacio da transformada
Wavelet como filtro em um sinal de ressonincia magnética do VA Medical Center, de

Sao Francisco — EUA.

2.4.16. Algoritmo da implementacio Wavelet unidimensional em Matlab

Nesta secdio, o algoritmo Wavelet serd explicado com foco na implementagio do
mesmo em Matlab. O software Matlab foi escolhido para essa execugio por possuir
uma excelente caixa de ferramentas Wavelet, alem da praticidade e versatilidade usual

do software.

2.4.16.1. Primeiro passo

Inicialmente, tem-se um sinal de entrada discreto a ser processado, ao qual chamaremos
por s, este sinal apresenta comprimento » ¢ assim sendo, a transformada DWT consiste
em um maximo de logmn estigios. Executando a primeira transformacfo, serfio
produzidos dois conjuntos de coeficientes: os de aproximacao (denominaremos cA;) e
de detalhe (denominaremos cDy). Esses vetores, obtidos pela convolugdo com um filtro
passa-baixa (Lo_D) para a aproximagio, e com um filtro passa-alta (Hi_D) para o
detalhe, seguido de uma aproximacao media entre dois samples.

De maneira ilustrativa tem-se para a transformagio unidimensional:

Fig. 2.10 — Transformada Wavelet
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coeficientes da

filtro passa-baixa reducéo de sample aproximagio
- :
- Lo D 12—
S — .
4 mop | 12— D

coeficientes

reducéo de sample
do detalhe

filtro passa-alta

Chamando o comprimento do filtro de 2N (dado que s; tem comprimento n), 0s sinais F
e G tém comprimento n+2N-I1, e os vetores de coeficientes cA; ¢ cD; tem o

comprimento do maior inteiro menor que ( n-1 J adicionado de N.
2

A partir do mesmo esquema, o segundo passo divide o sinal de aproximacado (cA;) em
um no vetor de aproximacio (cAz) e (cD;), e 0s passos subseqiientes repetem esta
interacdo com os vetores de aproximagio da interagfio anterior.

O seguinte esquema ilustra esse algoritmo:
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Fig. 2.11 - Arvore Wavelet

Repare que o sinal S, pode ser considerado um vetor de coeficientes iniciais cAg.

2.4.16.2. A transformada inversa
De maneira inversa, iniciando de cA; e cDj, a IDWT reconstitui cA;.; inserindo zeros no
local dos samples impares e convolucionando o vetor resultante com os filtros de

reconstrugao.

De maneira ilustrativa tem-se para a transformacfo inversa unidimensionat:

Fig. 2.12 — Transformada Wavelet inversa
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A operagio denominada “wkeep” extrai a parcela central do vetor, com 0 comprimento
conveniente € a operagio com os filtros indica uma convolugéo.
No caso bidimensional, um algoritmo similar € possivel para Wavelets bidimensionais,

obtidas por produtos tensoriais de Wavelets unidimensionais.
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2.4.17. Implementacio

Nesta secio serd apresentada uma primeira filtragem via Wavelet, através da
ferramenta matlab, serfio ressaltados os comandos e a seqiiéncia logica do
procedimento para um pixel. As linhas de comando para o video completo estdo em

anexo.

2.4.17.1. O sinal

Como j4 realizado na etapa anterior com a implementagdo do filtro FIR, inicialmente
serd apresentado o sinal, conforme se encontra no video ao longo do tempo e aqui em

escala de frames.

Fig. 2.13 — Sinal adquirido
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Ao sinal serd atribuida a nomenclatura s.

Encontrando o comprimento do sinal:
I_s = {ength(s);

Inicialmente, serd executada a decomposi¢do de 1* ordem, para que o procedimento

seja documentado passo a passo:

[rAl,ch] = dwi(s, "dmey™);

Nesse caso, serd utilizada a familia discreta de Meyers, conforme critérios explicados
anteriormente. Futuramente, para fim de comparagio serfio apresentados resultados
utilizando outras familias.

Repare que aqui foram gerados os coeficientes cA; e c¢Dy, representando a aproximagio
e 0 detalhe respectivamente.

Agora, a partir dos coeficientes serfio reconstruidas as funges de aproximagdo (Al) e

de detalhe (D1).

Al = upcoef("a”, cAl, "dmey”, 1, L_s);
D1 = upcoef(™d”, cD1, “dmey”, 1, |_s);

Caso fosse mnecessdrio, a partir dos coeficientes poder-se-ia ainda executar a

transformada inversa e obter novamente o sinal.

A0 = idwt(cAl,cDl1, “dmey”, 1_s);

Para executar a segunda transformagc#o, seria possivel executar a mesma transformagao
utilizando porem como entrada a aproximagdo do primeiro nivel e assim

sucessivamente.
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Existe ainda uma outra funcdo, que executa uma transformagdo de nivel n no sinal

primdrio.
[C,L] = wavedec (s, n, “dmey”);

Esse foi o procedimento adotado, por executar de forma compacta a enésima
transformacio.

Em seguida se faz necessdrio apenas observar os resultados e implementar a
metodologia para filtrar todos os pixels do video. O algoritmo completo encontra-se no

anexo e os resultados obtidos na segéio de resultados.
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3. TRATAMENTO DE UM SINAL

Nesse item serd abordada a filtragem de um sinal que representa a variacdo da tenséo
em um eletrodo no tempo, ou em termos de imagem, o sinal pode ser considerado
equivalente ao pixel no dominio do tempo. A partir da rotina exposta no item anterior o
sinal serd filtrado através do procedimento FIR, conforme as informagdes estabelecidas.
Para a transformada Wavelet, essa primeira andlise ndo serd repetida, os teste para a
anélise Wavelet serdo executados diretamente com o pixel visto que o sinal do eletrodo
serve inicialmente para uma primeira avaliagdo dos pardmetros do filtro FIR e para a
primeira aplica¢fo do sistema de processamento.

A seguir serd ilustrado o sinal de entrada proveniente de um eletrodo do Tomégrafo:

Fig. 3.1 — Sinal de entrada
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O sinal € marcado pela presenga de duas componentes de freqiiéncia, uma mais baixa
que executa aproximadamente 4 periodos no intervalo de aquisicdo (aproximadamente

0,1Hz) e outra com mais de 10 ciclos em um periodo de 10 segundos (superior a 1 Hz).
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Assim observa-se que a freqiiéncia da ordem de 0,5 Hz satisfaz o intervalo entre as

duas freqiiéncias.

3.1. Determinaciio da ordem do filtro FIR

A definicdo da faixa de banda de 0,5 Hz e satisfat6ria para o caso proposto, pois seriam
impostos ganhos diferenciados para freqiiéncias de 0,0 a 0,5 Hz (aqui se encaixa o sinal
de menor freqiiéncia), de 0,5 a 1,0 Hz (faixa de corte do filtro) ¢ de forma andloga
compreendendo as faixas sucessivas de amplitude 0,5 Hz. Assim, impondo ganho k = 1
para a faixa de passagem de freqiiéncia e k = 0 para a faixa de freqiiéncias a serem
descartadas, e por fim ganho k = 0,4 (ganho que suaviza o truncamento para filtros
desse porte) para a faixa que inclui a freqiiéncia de corte.

Assim, para que a faixa de freqiiéncia de 12 Hz (imposto pela taxa de aquisi¢do) seja
coberta por bandas de 0,6Hz tem-se o filtro de ordem 20, ou seja, 20 faixas de 0,6 Hz
compondo todo o espectro. E necessdrio que exista uma simeiria entre por parte do
filtro, assim, e conveniente que a ordem implementada seja de valor impar, assim serd

estudada a implementacao de um filtro FIR de ordem 21.

3.1.1. Determinacio da ordem do filtro Wavelet:

Conforme mencionado para o caso do filtro FIR, € de se imaginar que a freqii€ncia de
corte escolhida deva se situar entre as faixas de 0,2 Hz e 1 Hz. Para o mecanismo
Wavelet, que funciona sempre como um filtro de meia banda. Teremos entdo para o
sinal de 24 frames por segundo uma freqii€éncia maxima de 12 Hz (pelo critério de
Nyquest), assim, a primeira atuagéo do filtro Wavelet reduzird a 6Hz a freqiiéncia da
aproximagéo, em seguida a 3Hz, a terceira aplicagdo atingird a faixa dos 1,5Hz e apds a
quarta aplica¢fio, a aproximagio compreendera o intervalo de 0 a 0,75Hz, faixa de
observagdo que interessa ao propésito do trabalho. Assim, fica definida a quarta

filtragem como fonte da saida do sinal filtrado.
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3.2. Estendendo o tratamento para o video

Para que a filtragem do video seja completa, 2 metodologia de filtragem devera ser
imposta a cada pixel e para tanto é necessério que o video seja decomposto, filtrado e
posteriormente recomposto.

No caso do filtro Wavelet dada a ordem cronolégica das simulagdes (primeiramente
foram obtidos os resultados FIR) a etapa de testes com o sinal do eletrodo nédo sera
executada, assim, os resultados da filtragem via Wavelet serfio apresentados a partir do

tratamento deste mesmo pixel.

3.2.1. Manipulacio do video

O video aquisitado a partir do Tomégrafo por Impedancia Elétrica deve ser tratado
nesse trabalho pixel a pixel, o que agrega pequenas dificuldades em termos do
processamento da imagem.

A primeira dessas dificuldades trata da desfragmentagio do video em um conjunto de
imagens seqiienciais em um formato adequado. O segundo aspecto se relaciona ao fato
de que a cada imagem corresponde uma matriz ou no caso de um sistema RGB (Red,
Green, Blue), trés matrizes (nesse caso de 640x560) com defini¢do de oito bits (256
tonalidades), essas matrizes deverfio ser tratadas sequencialmente pixel a pixel, ou seja,
coordenada a coordenada com as matrizes dos instantes subseqiientes. Dessa maneira, a
partir de um sistema robusto de filtragem, a dificuldade do procedimento &
computacional, visto que serdo primeiramente organizados e em seguida tratados
358.400 (640x560) sinais para cada uma das trés cores, correspondendo a um total de
1.075.200 sinais a serem filtrados.

Por fim, os sinais devem ser novamente organizados, de maneira a obter o video

tratado.
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3.2.2. Separacio dos arquivos de imagem

Através do software “VideoMach”, o arquivo de video aquisitado foi dividido em uma
segiiéncia de imagens, a taxa de aquisi¢do dessas imagens foi fixada em 24 frames por
segundo (taxa de aquisi¢do da visdo humana) para que no se perdesse em qualidade
visual na execugio, o que pelo critério de “Nyquist” permite a determinagao no sinal de
freqiiéncias de até 12Hz, suficientemente alta para as freqiiéncias do nosso sistema
(imaginando uma freqiiéncia cardiaca de 120bpm) de ordens dificilmente superiores a
2Hz. O fator limitante as taxas de aquisicio mais altas se dd pelas dificuldades
computacionais. Perceba que as simulagSes sdo executadas em ambiente Windows e
através de softwares como o Scilab, 0 que acarreta em um processamento bastante lento
se comparado a linguagens computacionais, porem, em atividade experimental, a
utilizagdo desses softwares permite uma maior interatividade e principalmente uma
maior observabilidade durante o passo a passo do processamento.

Os frames foram armazenados em arquivos de imagem no formato bitmap (extensao
BMP) por se tratar de um formato néo compactado e de relativa facilidade de
manipula¢io embora ocupem conseqiientemente um maior espago fisico no disco rigido

do computador, alocando menos recursos de processamento.

3.2.3. Criacio das matrizes

O formato RGB organiza a imagem em um conjunto de 3 matrizes com valores inteiros
que variam de 0 a 255 (sistema de 8 bits) em cada elemento correspondente a um pixel.
Cada uma das matrizes representa respectivamente uma das trés cores RGB (vermelho,
verde ¢ azul) e o valor atribuido a cada posi¢do equivale a uma tonalidade daquela cor,
de maneira que um pixel com valores atribuidos de (0, 0, 0) corresponde a cor branca,
um pixel atribuido com (255, 255, 255) a cor preta, um pixel com valores (255, 0, 0) &
cor vermelha e assim por diante.

Através do Matlab as imagens em bitmap foram entdo convertidas nas trés matrizes do
sistema RGB e unidas em matrizes tri-dimensionais, onde linha e coluna representam a

posi¢do de cada pixel e a terceira dimensdo representa o iempo, estando uma matriz



42

separada da outra por um periodo de 1/24 segundos. Foram entdo criadas 3 matrizes

representativas de cada uma das cores.

3.2.4. Reducio do processamento

Para uma redugiio do processamento, a imagem pode ser dividida de acordo com a
necessidade ou nio de filtragem, para que s6 sejam filtrados os pixels que efetivamente
variam no tempo de acordo com o objeto de estudo (freqiiéncias de respiragdo e
perfusdo), assim, é proposta a seguinte divisdo da imagem em um quadrante ativo para

o filtro, na imagem, o interior da margem branca representa esse quadrante:

Figura 3.2 — Quadrante a ser processado
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Dessa maneira o numero de sinais a ser filtrado em cada uma das cores RGB foi
reduzido de 35.840 (imagem de 640x560) para 13.900 (340x385), ou seja, cerca de
39% da quantidade inicial. Em termos computacionais essa redugfo reflete
proporcionalmente o tempo de processamento. A comparagao visual pode ser feita pela

figura acima, onde os pixels filtrados correspondem a 4drea em destaque na figura.

3.2.5. Testando os filtros para um pixel

Para que a rotina seja executada por completo, a fim de reduzir a possibilidade de ndo
funcionamento do processo de filtragem, aleatoriamente foram filtrados alguns pixels,
de maneira a observar o comportamento do sinal antes e depois da filtragem. Essa
simulaciio que j4 havia sido feita com o sinal provindo de um eletrodo do tomégrafo
serd submetida a um novo teste, uma vez que agora trata-se de um pixel com definigao
de 8 bits, o que faz com que as variacdes sejam muito mais discretas do que no sinal
anteriormente testado, trata-se agora de um valor inteiro e que varia em intensidade de
0 a 255. Assim, supde-se evitar eventuais problemas com a simulagao que pudessem ser
percebidos apenas ap6s todo 0 processamento.

No caso do filtro Wavelet, a primeira andlise serd executada ji com o sinal do pixel,

uma vez que o mecanismo de andlise ja foi desenvolvido com o filtro FIR.
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4, RESULTADOS E ANALISES:

4.1. Sinal do eletrodo com filtro FIR:

A partir do sinal apresentado na secdo anterior foram obtidas as respostas ao sistema
imposto pela convolugdo com a inversa da Transformada de Fourier de um sinal
imposto. Serfo apresentados nessa sec@io os resultados obtidos em cada etapa dessa
passagem.

Para o filtro passa baixa:

O filtro no dominio da freqiiéncia: H

H=[1.;04:;0.;0.;0;0.:0.; 0.; 0.; 0.; 0.]

O filtro apds a aplica¢do da Transformada Inversa de Fourier: h

h = [0.0099493; 0.0132964; 0.0196933; 0.0285714; 0.0391421; 0.0504659; 0.0615368;
0.0713710; 0.0790948; 0.0840218; 0.0857143].

E o sinal filtrado, cbtido apds a convolugao:

Fig. 4.1 — Sinal com Passa Baixa
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Note que nos primeiros instantes o valor de tensdo encontra-se bem abaixo do valor
médio do sinal, isso ocorre porque os primeiras M-1 (sendo M a ordem do filtro) pontos
devem ser descartados quando se implementa o filtro FIR, jé que durante as primeiras
iterages o sinal ainda nfio possui um momento passado, e o filtro afua a partir dos M-1
instantes anteriores para fornecer o0 M-ésimo instante. Daf a inconveniéncia de utilizar
filtros de ordem muito alta para sinais curtos.

E perceptivel que a componente de maior freqtiéncia foi eliminada, restando ao sinal a
componente de menor freqiiéncia.

De modo similar foi aplicado o filtro passa alta, de onde se obteve:

O filtro no dominio da freqiiéncia: H

H=[0.; 04; 1.; 1.; 1.; 1.; 1.; 1.5 1.5 1.5 1.]

O filtro ap6s a aplicag@o da Transformada Inversa de Fourier: h

h = [0.0088856; 0.0038649; - 0.0057304; - 0.0190476; - 0.0349036; - 0.0518893;

- 0.0684957; - 0.0832470; - 0.0948327; - 0.1022232; 0.8952381 ]

E o sinal filtrado, obtido apds a convolugio:

Fig. 4.2 — Sinal com Passa Alta
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Os resultados obtidos com a aplicacdo do Filtro Passa Alta foram condizentes com 0s
obtidos anteriormente, a componente de baixa freqiiéncia foi eliminada e a componente
de maior freqiiéncia pode ser bem observada no sinal.

De maneira andloga os primeiros instantes do sinal ndo podem ser considerados pelo
mesmo motivo ja explicitado na andlise do Filtro Passa Baixa.

Com o intuito de comparar o sinal de entrada e o sinal de saida foram plotados os
graficos dos sinais antes da filtragem e ap6s a filtragem.

Como a componente de baixa freqiiéncia tem amplitude bem maior do que a
componente de alta freqiiéncia, por motivo de escala o sinal de saida a ser comparado

foi o filtrado pelo Passa Baixa.

Fig. 4.3 — Comparacio de Sinais
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O sinal mais suave (filtrado) sobreposto ao sinal turbulento (néo filtrado) nos da a exata

idéia da utilizacio do filtro.
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E notdvel o atraso de fase do sinal filtrado, que segundo a teoria deve ser linear com a
freqiiéncia. E perceptivel ainda a manutengdo da amplitude em relagéio ao sinal de

entrada (ganho k = 1) implicado a banda de freqiiéncia baixa.

4,2.  Sinal do pixel com filtro FIR:

De maneira similar ao apresentado na filtragem do sinal do eletrodo, alguns pixels
foram filtrados, a seguir ser explicitado o resultado da filtragem do pixel posicionado
nas coordenadas (145,215), o Unico agravante e esse € 0 motivo para que sejam
executados novos testes € o fato de tratarmos agora de uma varidvel com baixa

definicdo, que sempre possui valores inteiros e na faixa que varia de 0 a 255.

Fig. 4.4 - Sinal do pixel
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E ap6s o processamento, de maneira exatamente homologa a anterior, com 0 sinal

filtrado em passa baixa.
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Fig. 4.5 — Pixel filtrado
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Repare que nos instantes iniciais a intensidade néo reflete a real condigo de filtragem,
devido a auséncia de instantes iniciais suficientes para suprir de informacgdes os
coeficientes do filtro, o comprimento dessa zona afetada € causado pela ordem do filtro.
Nas figuras a seguir serfio plotadas as Transformadas de Fourier (curvas FFT)
normalizadas do mesmo Pixel anteriormente estudado, a fim de consolidar

qualitativamente a analise do efeito do filtro FIR sobre o Pixel.



Figura 4.6 — FFT antes da filtragem
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4.3. Sinal do pixel com filtro Wavelet:

O mesmo pixel filtrado em FIR, foi agora filtrado. A famflia utilizada para a
decomposigio foi a da transformada discreta de Meyer, a seguir o sinal do coragdo (que

€ a soma dos detalhes da segunda, terceira e quarta filtragem) e a sua respectiva FFT.

Figura 4.8 — Sinal filtrado e FFT
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E apés o processamento, de maneira exatamente homologa a anterior, com o sinal da

respiracio.
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Fig. 4.9 — Pixel filtrado
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E ainda, para propiciar uma melhor observacio, é conveniente plotar o sinal filtrado em

sobreposicdo ao sinal original.
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Fig. 4.10 - Pixel filtrado
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Repare que o sinal filtrado nao apresenta defasagem temporal (caracteristica
supracitada da Wavelet) e que a aproximagio Wavelet trabalha em cima da
aproximacfio media da regido.

Comparativamente, teremos as FFT dos sinais antes da filtragem e ap6s o

procedimento:



Fig. 4.11 — FFT do sinal adquirido
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Fig. 4.12 — FFT do sinal filtrado
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Repare que o segundo pico, que no primeiro gréfico encontra-se préximo a taxa de 60

ciclos. A unidade de ciclos refere-se ao comprimento total do sinal.

4.4. Diferentes filtragens Wavelet para o pixel:

Aqui serdo expostas diversas filtragens via Wavelet para o pixel avaliado, sempre na

mesma decomposi¢io, no caso em questdo a quarta passagem do filtro.

Fig. 4.13 - Filtrado por Coiflet2

Aproximagéo 04 - coif2
300 T T T T T T

i w \ /\

150 |-

100

Intensidade de Azul

] ] i 1. i i
50 100 150 200 250 300 350 400
Frames



Fig. 4.14 — Filtrado por Daubechies3
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Fig. 4.15 — Filtrado por Haar
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Fig. 4.16 — Filtrado por Symlet7
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Fig. 4.17 — Filtrado por Daubechies2
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Fig 4.18 — Filtrado por Coiflet1
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Nesta se¢do € importante reparar que: uma filtragem de mesma ordem com familias
diferentes gera resultados bem diferentes. Deste fato remete a importincia de escolher
uma boa famflia Wavelet. Lembrando ainda que muitas familias diferentes podem
resultar em boas aproximacgdes, € que nem sempre € simples optar entre uma ou outra

familia.

4.5. Passagens da decomposicio Wavelet do pixel:

Para obter o sinal filtrado conforme a inten¢do do trabalho, foram executadas quatro
decomposicdes sucessivas, aqui, serdo apresentadas a aproximacdes e o detathe de cada
uma das passagens, inclusive passagens posteriores a quarta decomposi¢ao, apenas para

que se evidencie a escolha da quarta decomposicéo.



Fig. 4.19 — Primeira aproximac&o e detalhe
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Fig. 4.20 — Segunda aproximacio e detalhe
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Fig 4.21 — Terceira aproximagcfo ¢ detalhe
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Fig. 4.22 — Quarta aproximacéo e detalhe
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Fig. 4.23 — Quinta aproximacao e detalhe
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Fig. 4.24 — Sexta aproximacio e detalhe
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Fig. 4.25 — Sétima aproximacio ¢ detalhe
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Fig. 4.26 — Oitava aproximagdo ¢ detalhe
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4.6. Plano da filtragem Wavelet:

Uma forma de observar toda a composigio da arvore da decomposigdo Wavelet € plotar
no plano do tempo (no caso em frames) pela freqiiéncia, que na realidade remete a
todas as divisdes de meia banda. A intensidade do sinal representada em um cédigo de

cores conveniente.

Fig. 4.27 — Plano Wavelet
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Perceba que as cores mais quentes se concentram na regiao inferior, isto porque, cOmo
visto na FFT, a faixa de maijor energia é a de baixas freqiiéncias, a informagao adicional
obtida nesse tipo de andlise estd relacionada a distribuigao espacial (no caso em

unidades de frame) na abscissa, em uma anélise convencional em termos do tempo.
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4.7. Resultados da filtragem do video com FIR:

Foram obtidos resuitados positivos para um pixel, e entfo, partiu-se para a rotina de
filtragem de cada pixel através da utilizacdo de lagos 16gicos em ambiente Matlab, a
fim de filtrar toda a matriz de imagens no tempo (frames). As simulagdes dos 392.700
siqais das 3 cores (totalizando mais de 1 milhdo de sinais) consumiram ao todo cerca de
10 horas de processamento em uma maquina com 640MB de meméria RAM e
processador de 1,53GHz.

Os resultados foram satisfatérios, embora a defasagem gerada em cada pixel seja um
pouco diferente, o que cria uma pequena desconexdo entre os pontos filtrados, por
vezes € possivel notar resquicios de alta freqiiéncia no video filtrado, nfio por o pixel
ndo estar devidamente filtrado, mas pelo fato de pixels vizinhos estarem em pequena

defasagem. O filtro FIR apresenta uma boa vantagem, de permitir a filtragem continua.

4.8. Resultados da filtragem do video com Wavelet:

A exemplo do executado para o filtro FIR, apés a execugio bem sucedida das rotinas
com um pixel, iniciou-se o procedimento de andlise para o video completo. Ainda em
ambiente Matlab, no caso da filtragem via Wavelet, as simulagbes dos 392.700 sinais
de cada cor, somados consumiram cerca de 1,5 horas de processamento na mesma
maquina, com 640MB de meméria RAM e processador de 1,53GHz.

A principal caracteristica observada diz respeito & manutengdo do espago por todos os
pixels, o que gera um excelente acoplamento entre os pixels. Outro fato interessante do
filtro aplicado € a necessidade da filtragem por janelas, a esse fato podem estar ligados
alguns pesares nessa filtragem, que ndo pode ser feita instantaneamente, alem de contar

com possiveis erros de truncamento. Se bemn utilizada produz excelentes resultados.
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CONCLUSOES

Primeiramente, cabe ressaltar que aqui foram apresentados alguns (poucos) conceitos
do tratamento matemdtico de sinal via transformada Wavelet, esta tecnologia encontra-
se atualmente em estagio de desenvolvimento, e ainda apresenta um infindsvel leque de
possibilidades.

Quanto as filtragens do sinal e do video, ambas mostraram-se bem sucedida e cada uma
apresentou alguns pontos favoraveis e outros ndo tdo favordveis.

Foi comprovado o atraso de fase imposto pelo filtro FIR e a condi¢do de infidelidade ao
sinal nos instantes iniciais, dado que os coeficientes do filtro ainda estdio sendo
determinados, o que ndo chega a ser um problema, mas vale ser ressaltado.

O atraso de fase gerou um efeito de pulsagfo relativo entre os pixels, o que pode induzir
a algum erro.

O filtro FIR mostra-se consistente para diversas possibilidades, porem, suponhamos
que a faixa de freqii€ncias fugisse ao controle (uma respiragio ofegante por exemplo),
pode-se imaginar que a filtragem ndo ocorreria devidamente. E evidente que essa
abordagem diz respeito apenas ao caso de sinais biol6gicos, e nio coloca em questio o
funcionamento do mesmo.

Para a decomposi¢do Wavelet, os resultados se mostram muito fiéis e a questdo da
manutencdo temporal € talvez, o ponto alto da mesma. Um problema diz respeito 2
escolha da familia, pois, alem da necessidade de estudar cada uma delas, € altamente
recomendével a execugdo de testes, a fim de comprovar uma boa escolha.

O ponto negativo da filtragem Wavelet, sem duvida diz respeito 4 necessidade da
anélise por janelas, o que pode ser corrigido através da imposicdo de atrasos na
execucao dos resultados, eliminando nesse caso toda a vantagem de processamento
obtida pelo método. E necessdrio observar também que no caso de alteragdes da
freqiiéncia do sinal, a filtragem pode ndo se mostrar adequada.

A filtragem de um pixel mostrou-se tdo efetiva quanto a filtragem do sinal do eletrodo,
embora existisse um agravante para esse aspecto, pelo fato de termos uma baixa

defini¢do do sinal (8 bits).
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A filtragem do video foi uma excelente forma de analisar as limitacSes do sistema de
pos-filtragem por meio do filtro FIR para cada pixel individualmente, que embora tenha
se mostrado eficiente, exigiu bastante dos recursos computacionais, através dos meios
pelos quais foi executado. E quanto a0 Wavelet, embora existam ganhos incomparéveis
de'execucio, ainda desempenhou processamento lento. E claro que deve ser levado em
consideragdo que o processamento foi feito por um software pesado, com interface
grafica e tantos outros agravantes em termos computacionais.

Em termos computacionais, o filtro FIR consumiu cerca de 7 vezes mais recursos do
que a analise Wavelet. Qualitativamente, a transformada por onduletas apresenta
melhor separagfio entre imagens de respiragdo e perfusdo, utilizando como critério o
que se espera destes sinais do ponto de vista fisiol6gico.

Conforme era de se esperar, na execugio FIR, o conjunto de pixels pés-filtragem ainda
apresentou alguma caracteristica da freqiiéncia mais alta, isso porque cada pixel foi
filtrado localmente, tendo sido deixado de lado o efeito global do video, onde parte do
efeito pulsitil permanece aparente. Esse efeito mostra-se bastante sutil, mas nio pode
ser relevado.

Evidentemente, os resultados poderiam ser melhores caso a filtragem ocorresse antes da
estimago dos pardmetros, onde os sinais s30 em menor numero do que as centenas de
milhares de pixels de um video. O efeito de pulsacfio lateral seria eliminado na
estimacéo dos pardmetros.

Uma outra possibilidade, para eliminar o efeito global no filtro FIR, seria a filtragem da
matriz de pixels no sentido de cada frame (linhas horizontais e verticais) porem ainda
assim, existem os pixels com vizinhanga diagonal, e isso demandaria alto custo
computacional,

O tratamento, no entanto, mostrou-se eficiente na eliminagio das fregiiéncias
indesejadas, o que demonstra uma rotina robusta.

A anglise Wavelet deve ser destacado o fato de ndo deixar os chamados efeitos globais,
0 que demonstra excelente acoplamento entre os pixels, isso ocorre principalmente pela

preservacéo da informagéc do tempo na filtragem.
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Uma comparagio entre os dois procedimentos faz com que sejam avaliados cada um
dos problemas supracitados e a viabilidade de aceitd-los, ou resolvé-los pos outros
meios. Para esse estudo, os resultados Wavelet sdo melhores, engrandeceria o trabalho
a filtragem continuada do sinal, a fim de analisar o comportamento da Wavelet.
O tempo exigido na execugio dessas filtragens poderia ser bastante diminuido se as
rotinas fossem executadas por exemplo em linguagem C, através de um programa
compilado, porem em termos de rastreabilidade de problemas a experiéncia sairia
perdendo, visto que a utilizagdo de ferramentas como as do Matlab auxiliam
notoriamente a execugio do estudo.
O resgate bibliogréfico através do tema possibilitou um bom entendimento a respeito
do assunto e dos fendmenos que o cercam.
A proximidade do trabalho com a drea medica torna-o ainda mais interessante, por
vislumbrar a possibilidade de agregar algum tipo de valor tecnolégico ao
desenvolvimento da Bioengenharia, por meio do tratamento técnico de sinais
adquiridos a partir de funcGes vitais.

A utilizag¢@o da transformada por onduletas para separar a perfusio da respiracio em
imagens obtidas por tomografia por impedincia elétrica € tecnicamente vidvel e, nestes
resultados preliminares, apresenta vantagens qualitativas nas imagens filtradas

resultantes, os sinais filtrados aproximam-se dos fisiolégicos.
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ANEXO 1 - Cédico Fonte Scilab — Rotina FIR

c¢lear;

v=FfscanfMat ("C:\..."');

v=v*1000; // efeito de escala
i=0:455;

t=1*42/456;

plot2d(t,v):

T=6*7; // tempo total
l=max(size(v)};

fs=1/T;

frg=i*fs/456;

// taxa de amostragem - caracteristicas do sinal
M=21; ,

// tamanho do filtro fir tem gue ser numerc impar
passa=0;

//0 se passa baixa, 1 se passa alta
f¢=0.5; //freguencia de corte

for i=1:((M+1)/2};

wol{i)=fs* (i-1) /M;

end

//we= forz2*spi/fs;

// define o vetor de freqlé&ncias
for i=1:((M+1)/2);

wi{i)=2*%pi* (i-1)/M;
J/wii)=2*%pi*{(i-1)/M;

// metade do espectro

end

controle=wc/fc;
controle=controle-1;
abgoluto=abs (contreole)
minimo=min{absoluto)

if passa==0 then

for j=1:{((M+1)/2)

if controle(j)<minime
H(j)=1;

end

if abs(controle(]j))==minimec
H{j) = 0.4;

end

if controle(j)>minimo
H(j) = 0;

end

end

end

if passa==1 then

for j=1:((M+1)/2)

if controle(j)<minimo
H{j)=0;

end

if abg({controle(j))==minimo
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H{§) = 0.4;
end

if controle(j)>minimo
H(j) = 1;

end

end

end
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// define a matriz de coeficientes para realizar a IFFT com restricoes

for n=1:10;

for k=1:11;
alk,n)=2*cos (w({k)* ({M-1}/2-(n-~1))};
end;

end;

for k=1:11;

afk,11)= 1i;

end;

// determina os cceficientes do filtro FIR, h=fft(H,1)
h=inv{a)*H;

// condicac de simetria nos coeficientes
for i=1:11;

ht (i} =h{i);

end;

for i=1:10;

ht (21-(i-1))=h{i};

end;

// calcula o sinal de voltagem filtrado
vi(1)=v{1) *h{1};
vE(2)=v{2)*h(i}+v (1) *h(2);
VE(3)=v(3)*h{1)+v(2)*h(2)+v (1) *h {3} ;
for i=1:21

aux=0.0;

for j=1:1

aux=aux+v(i- (j-1))*ht(j) ;

end;

vi(i)=aux;

end;

for i1i=22:456;

aux=0.0;

for j=1:21;

aux=aux+v (i-(j-1))*ht(]);

end;

vEi (i) =aux;

end;

xset ("window", 1)

plot2d(t,vE) ;



ANEXO II - Cédico Fonte Matlab — Rotina para separar as matrizes RGB

clear
for i=1:4090
n=num2str{i};

if (1i<1000)
n=['0',n];
end

if (i<100)
n=['0',n];
end

if (i<10}
n=['0',n];
end

file=[;arquivo',n,'.bmp'];
IMG=imread(file) ;
R=IMG(:,:,1});
G=IMG({:,:,2);
B=IMG(:,:,3);
file=['arguiveo',nl;
gave(file, 'R?,'Q",'B"};
end
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ANEXO III - Cédico Fonte Matlab - Reducio em quadrantes da drea filtrada

clear

lim=1062;

inf=45;

sup=385;

1d=450;

le=65;

for i=1:1im
n=num2str (i) ;

if {i<1000)
n=['0"',n};

end

if (i<100)
n=['0',nl;

end

if {i<10)
n={'0%,n};

end
file=[tgalvando',n];
load(file);
RED(:,:,i)=R{inf:sup,le:1d};
end

file='RED';
gave(file, "RED') ;
clear RED;

clear R;

for i=1:1im
n=num2styr (i) ;

if {i<1000)
n=[|0rrn];

end

if {(i<100}
n=['0',n};

end

if {i<10)

n=['0',nl;

end
file={'salvando',n];
load(file);
GREEN(:,:,1)=G(inf:sup,le:1d);
end

file="GREEN';
gave(file, 'GREEN') ;
clear GREEN;

clear G;

for i=1:1im
n=num2gtr {i) ;

if (i1i<1000)
n=['0',n];

end

if (i<100)

n=['0"',nl;
end
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if (i<10)

n=[lolrn] H

end
file=['salvando',n];
load{file);
BLUE(:,:,i)=B(inf:sup,le:1d);
end

file='BLUE’ :
save(file, 'BLUE') ;
clear BLUE;

clear B;

76



ANEXO 1V - Cédico Fonte Matlab - Filtro FIR para todos os pixels

clear

clear all;

for color=1:3

color

if color==1

load RED

cor=RED(:,:,1:400);

clear RED

end

if color==2

clear cor

load GREEN

cor=GREEN (:,:,1:400) ;

clear GREEN

eng

if color==3

clear cor

load BLUE

cor=BLUE(:,:,1:400);

clear BLUE

end

for lin=1:341

for col=1:386

for i=1:400
v({i)=cor(lin,col,i);

end

i=1:400;

t=1%42/400;

Fv=gin (2*%pi*i/30)+0.5%sin (2*%pi*i/5) ;
gplot(t,v);

T=6*7; % tempo total
l=max(size(v)};

fs=1/T;

% taxa de amostragem - caracteristicas do sinal
M=21;

% tamanho do filtro fir tem que ser numerc impar
passa=0;

%0 se passa baixa, 1 se passa alta
fe=1; %frequencia de corte

for i=1:({M+1)/2)

we (i) =fs* (i~1)/M;

end

twe= fo*2+*%pi/fs;

% define o vetor de frequencias
for i=1:({M+1)/2)
w(l)=2%pi*{(i-1)/M;
$w(l)=2*%pi*(i-1)/M;

% metade do espectro

end

controle=we/fc;
controle=controle-1;
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abscoluto=abs{controle) ;
minimo=min{abscluto) ;

if passa==0

for j=1:({M+1}/2)

if controle{j)<minimo
H{j)=1;

end

if abs{controle(j)}==minimo
H{j) = 0.4;

end

1f contreole(j)>minimo

H{j) = 0;

end
end
end

]

if passa==1

for j=1:{(M+1)/2)

if controle(])<minimo
H(j)=0;

end

if abs(controle(j))==minime
H{j) = 0.4;

end

if controle(j)»>minimo
H{j) = 1;

end

end

end
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% define a matriz de coeficientes para realizar a IFFT com restricoes

% a matriz a(,) esta explicada na secao 8.1.2 do Proakis
for n=1:10

for k=1:11

a(k,n)=Z*cos{w(k}*((M-1}/2- (n-1)));

end

end

for k=1:11

af{k,11)= 1;

end

% determina os coeficientes do filtro FIR, h=fft{H,1)
h=inv{a)*H';

¥h=inv{a) *H;

% condicao de gimetria nos coeficientes
for i=1:11

ht (i)=h(i};

end;

for i=1:10

ht(21-(i-1))=h{i);

end

% calcula o sinal de voltagem filtrado
vE(l)=v{(1)*h (1) ;
vE(2)=v{(2)*h{1)+v(1)*h(2);



vE(3)=v(3)*h(1)+v(2) *h(2)+v (1) *h{3);

for i=1:21

aux=0.0;

for j=1:1i
aux=aux+v (i-{j-1) ) *ht (§);
end;

vi (i) =aux;

end;

for i=22:400;
aux=0.0;

for §=1:21;
aux=aux+v{i-(j-1})*ht{(j);
end;

v (i) =aux;

end;

splot (t,vE);
cor(lin,col, :)=vE;
end

end

file='COLOR';
RGB=rnium2str (color) ;
file=[(file,RGRB];
save(file, 'cor');
end
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ANEXO V - Cédico Fonte Matlab — Recomposicio das imagens

clear

load LOWFIR

for i=1:400

n=num2str (i) ;

if (i<1000)

n={'0’ 1} H

end

if (i<100)

n=['0',n];

end

if (i<10)

n=['0%,n];

end
file:['lowfir',n,'.bmp'];
IM(:,:,l):FLRED(:,:,i);
IM(:,:,2)=FLGREEN(:,:,i);
IM(:,:,B):FLBLUE(:,:,i);
imwrite (IM, file);

c¢lear IM;

end
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ANEXO VI- Cédico Fonte Matlab — Recomposicio do video em AVI

clear
AVIOBJ=avifile('movie.avi', 'fps', 24)
for i=1:400

n=num2str (i) ;

if {i<1000}

n={'0',nj;
end,

if (i<100)
n=['0',nl;
end

if {i<10)
n={'0¢"',nl;
end

file=['lowfir',n,'.bmp'];
IM=imread(file};
AVICBJI=addframe (AVIOBJ, IM) ;
clear IM;

end

AVIOBJI=close (AVIOBJ) ;
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ANEXO VII - Cédico Fonte Matlab — Filtragem Wavelet para todos os pixels

clear all;

for color=1:3

color

if color==1

load RED
Cor=RED(:,:,1:400};
clear RED

end

if color==

c¢lear cor

load GREEN
COr=GREEN (:,:,1:400);
¢lear GREEN

end

if color==3

clear cor

load BLUE
cor=BLUE(:, :,1:400);
clear BLUE

end

for lin=1:341

for col=1:386

for i=1:400
v(i)=cor(lin,col, i) ;
end

s=double (v) ;
[c,l]=wavedec(s,4,'dmey‘);
a4 = wreoef ('a’,c,1, 'dmey',4);
cor (lin,col, :)=a4;
end

end

file="COLOR';
RGB=num2str {(color) ;
file=[file,RGB];
save(file, 'cor');
end
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